Une approche hybride pour le sac a dos
multidimensionnel en variables 0-1

Michel Vasquez(?) et Jin-Kao Hao(?
(1) LGI2P, Parc Scientifique Georges Besse, 30035 Nimes cedex 1
vasquez@site-eerie.ema.fr
(2) LERIA, Université d’Angers, 2 bd Lavoisier, 49045 Angers cedex 1
Jin-Kao.Hao@univ-angers.fr

soumis en mars 2000, rapporté en décembre 2000, révisé en janvier 2001

Résumé
Nous présentons, dans cet article, une approche hybride pour la résolu-
tion du sac & dos multidimensionnel en variables 0-1. Cette approche com-
bine la programmation linéaire et la méthode tabou. L’algorithme ainsi
obtenu améliore de maniere significative les meilleurs résultats connus sur
des instances jugées difficiles.

1 Introduction

Le sac & dos multidimensionnel en variables bivalentes (MKP01) permet de
modéliser une grande variété de problemes ou il s’agit de maximiser un profit
tout en ne disposant que de ressources limitées. Son expression formelle est la

suivante :
maximiser c.z

MKPOI{ s.c. Az <betz €{0,1}"

avec c € IN*" A € IN™*" et b € IN™. Les coordonnées binaires z; du vecteur
x sont des variables de décision : z; = 1 si 'objet j est retenu dans le sac,
0 sinon. ¢; est le profit (ou gain) associé & l'objet j. Les éléments (a;;) de la
matrice A représentent, pour chaque type de ressource 7, la consommation de
I’objet j. Enfin les b; sont les quantités disponibles de chacune des m ressources.
L’objectif est de trouver un sous ensemble d’objets qui maximise le profit tout
en respectant les contraintes de limitation de ressources.

Le fait qu’on le rencontre dans des domaines d’application aussi différents
que ’économie [25], 'industrie [9, 18, 32], les transports, le chargement de car-
gaison [4, 31] et Pinformatique répartie [16], etc. lui confere un grand intérét
pratique. Ce probleme d’optimisation combinatoire sous contraintes est cepen-
dant NP-difficile [15]. Sa résolution revét donc, aussi, un caractére théorique

toujours d’actualité.

Ainsi de nombreux travaux ont été effectués sur le sujet [1, 2, 5, 7, 8, 10,
11, 17, 20, 23, 24, 31, 32] et beaucoup d’heuristiques sont encore explorées pour
proposer des solutions, sinon exactes, du moins approchées a ce probléeme. En
effet les méthodes exactes sont limitées & de petites instances ou a des ins-
tances ayant des caractéristiques bien spécifiques : matrice A creuse et quasi
unimodulaire, redondance de contraintes etc. Aujourd’hui, la résolution des ins-
tances les plus difficiles de MKPO1 se réalise donc essentiellement avec des ap-
proches heuristiques. L’aptitude de ces dernieres & fournir des solutions de bonne
qualité les rend indispensables dans le domaine pratique. Elles s’averent aussi
tres utiles pour le développement d’algorithmes exacts fondés sur des méthodes
d’évaluation et séparation.

Nous proposons, dans ce papier, une approche hybride qui combine la pro-
grammation linéaire et la recherche locale tabou. L’idée fondamentale de notre
approche consiste a explorer ’espace de recherche, d’'une maniere controlée, au-
tour d’optima continus de probléemes relaxés. Ainsi nous nous distinguons des
approches fondées sur le critére de choix classique du ratio profit/ressource.
Pour mettre en ceuvre cette approche, nous proposons d’abord une méthode
permettant de déterminer le nombre d’objets & 'optimum de MKPO1. Nous
développons ensuite un algorithme de recherche locale intégrant un voisinage
original et une implémentation efficace de la technique d’élimination inverse
pour la gestion de la liste tabou.

Nous validons cette approche sur des benchmarks classiques ansi que des
benchmarks récents réputés difficiles [7, 20]. Nous montrons que cette approche
permet non seulement de retrouver les meilleurs résultats connus pour 1’en-
semble des jeux expérimentés, mais aussi d’améliorer de maniere significative
les meilleurs résultats pour un grand nombre de jeux les plus difficiles [7, 23].

Notre exposé s’organise comme suit. Apres un état de lart sur les princi-
pales stratégies de résolution (section 2), nous donnons le principe général de
notre approche hybride (section 3). Nous développouns ensuite la phase de la pro-
grammation linéaire (section 4), ainsi que la phase de la recherche locale tabou
(section 5). Ces développements sont alimentés par la présentation des résultats
expérimentaux (section 6), ainsi qu’'une analyse sur les perfomances de notre
algorithme (section 7). Nous terminons par une discussion sur de nombreuses
perspectives.

2 Stratégies de résolution

Afin de situer notre approche dans le contexte général des méthodes de
résolution, nous présentons ici, quelques uns des axes de recherche explorés.

2.1 Meéthodes exactes

Il existe un algorithme pseudo polynomial pour résoudre le MKPO1 par la
programmation dynamique [4, 21]. Sa complexité O(n []\~, (b; + 1)) le rend tres
vite impraticable en fonction de m et des b;.

Les algorithmes d’évaluation et séparation se distinguent essentiellement par
le calcul de borne qu’ils mettent en ceuvre pour élaguer ’arbre de recherche.
Un premier algorithme de branch & bound [31] propose de prendre, comme
borne supérieure pour I’évaluation, la valeur min{zy(k), ..., zm (k) } ot z;(k) est
Poptimum du sac & dos ne contenant que la ¢ contrainte au nceud k de
I’arborescence. La variable de branchement étant alors celle qui correspond a
I’élément fractionnaire de ce probleme de sac a dos unidimensionnel. L’avantage
de cette méthode est qu’elle ne traite que des sacs & dos simples que ’on sait bien
résoudre [28]. En revanche la borne utilisée est assez imprécise. Dans ’exemple
suivant :

c = (4 5 4 4)
exemple 1 (n =4,m = 2) 4 = <1 3 3 2> b— (3)
S \3 3 21 ~\3

z1 =8 pour z; = (1,0,0,1) et zo = 8 pour z2 = (0,0,1, 1), alors que la solution
optimale qui tient compte des deux contraintes, est Z = (0, 1,0,0) et vaut Z = 5.
Non seulement z est relativement loin de min{z1, 22}, mais I'information sur les
composantes de T est completement fausse.

L’estimation, plus élaborée, de la valeur potentielle d’un branchement a
partir de multiples relaxations (Lagrangienne, composite...) et du calcul des
multiplicateurs duaux [17] donne de meilleurs résultats que le précédent algo-
rithme avec toutefois un accroissement sensible de la complexité de calcul. D’une
maniere générale les algorithmes d’énumération implicite se heurtent a une com-
binatoire en O(2"). Pour élargir leur domaine d’application a des instances de
taille plus grande on peut d’une part chercher de bons minorants par des heu-
ristiques de construction efficaces, et d’autre part réduire la taille du probleme
par fixation de variables [21], élimination de contraintes [11] ou encadrement du
nombre de variables & 'optimum [12]. Ces derniéres méthodes font appels aux
aspects les plus théoriques de la programmation linéaire.

2.2 Meéthodes approchées

Plusieurs algorithmes approchés combinent la programmation linéaire avec
une heuristique dont 'objectif est de rendre entieres des variables continues.
En effet, pour utiliser la programmation linéaire il faut supprimer le caractere
binaire des variables z;. La relaxation des contraintes d’intégrité est une tech-
nique omniprésente dans les méthodes de résolution de MKPO1. Elle conduit &

la résolution du probleme associé a MKPO1 suivant :

maximiser c.x

MKP { s.c. Az <betzel0-1]"

Les composantes du vecteur x sont, dans le cas de MKP, comprises dans l’in-
tervalle continu [0-1]. MKP se résout efficacement! par la méthode du simplexe
[30].

La résolution de MKP fournit une borne supérieure Z qui, associée aux cotts
réduits des variables hors base, permet d’introduire une technique de fixation de
variables [21]. Une des techniques consiste & faire entrer les variables d’écart en
base [2]. Ce principe a été repris et intégré & des approches heuristiques [1, 24].
Enfin, Lgkketangen et Glover ont réalisé plusieurs implantation d’algorithmes
tabou exploitant le tableau du simplexe [26, 27].

Par ailleurs on retrouve les valeurs des variables duales & ’optimum de MKP
comme multiplicateur v du vecteur colonne a; des consommations de ’objet j,
dans les criteres de type ratio ¢;/(u.a;), pour le choix d’une variable z;. Ce ra-
tio profit/ressource intervient, sous différentes variantes, dans la majorité des
heuristiques fondées sur des mécanismes de transformation locale de la solution
courante [7, 8, 20, 23].

Parmi ces dernieres nous soulignons les algorithmes génétique (AG) de Chu
et Beasley [7] et tabou de Hanafi et Fréville [23] qui obtiennent les résultats
parmi les meilleurs sur des instances difficiles de MKPO1. Ces deux algorithmes
se distinguent par la métaheuristique mise en ceuvre pour controler I’exploration
de l’espace de recherche (AG/tabou) ainsi que par une petite variante dans
le mécanisme de transformation des configurations x visitées par le processus
d’optimisation. Cette opération correspond a l’algorithme bien connu suivant :

Les lignes 1 et 2 se retrouvent dans ’algorithme [23] (ainsi que dans [§]...).
La ligne 1 identifie la contrainte la plus saturée. C’est une fagon de s’affranchir
du calcul du vecteur multiplicateur u tout en conservant le critere du ratio
profit/ressource. Dans [7] cette technique est remplacée par

j* = argmin{c;/(u.aj) | zj =1, j € [L,n]}
oll u correspond aux coiits marginaux des m ressources de MKP.

Considérons cependant 'instance de MKPO1 suivante :

(12 12 9 8 8)
(11 12 10 10 10) b=30

o
|

o
|

exemple 2 (n =5,m = 1) {

LCest ici I’aspect pratique qui nous intéresse, il est vrai qu’en théorie le comportement du
simplexe peut étre exponentiel.

Algorithme 1 : DRrROP-ADD

Enlever :

n | i* =argmaz { (Z?Zl aij.:rj) /bi, i € [1,m]}
2] J* =argmin{cj/a;; | x; =1, j € [1,n]}
Tjx 0

Ajouter :

Faire
k* = argmazx {ck | zrp =0 et Vi [aik + E?Zl(aij.a:j) <b; ke [l,n]}
Tpe 1

tant que k* existe

Un algorithme glouton guidé par 'heuristique du ratio profit/ressource
(ou simplement celle du meilleur profit) pour ajouter des objets dans le sac
construira la solution z = (1,1,0,0,0) qui vaut z = 24 alors que la solution
binaire optimale est & = (0,0,1,1,1) pour z = 25.

Cet exemple n’est pas une démonstration, mais il illustre 'hypothese sui-
vante. Le role de la transformation locale est mineur devant celui de la stratégie
globale d’exploration de l’espace de recherche. Cette vision globale est natu-
relle pour un algorithme génétique; elle correspond a la population de vecteurs
z impliqués par les opérateurs de croisement, de sélection et de mutation, qui
caractérisent cette métaheuristique (une centaine d’individus sont gérés simul-
tanément dans [7]). Elle n’est pas systématique pour un algorithme tabou. Elle
correspond, dans ce cas, a une alternance de phases d’intensification et de di-
versification de la recherche. Dans [23] cette alternance de phases est renforcée
par une stratégie d’oscillations entre la zone de faisabilité (A.z < b) et la zone
d’infaisabilité (3i € [1,m]|a;.z > b;).

Pour finir ce survol des métaheuristiques appliquées & MKPO01, nous citerons
le recuit simulé [10], ainsi qu’une étude des méthodes de bruitage [5] fondées sur
les travaux de Charon et Hudry [6]. Les références [5, 10] ne présentent cepen-
dant que des résultats sur des instances de petites tailles. Enfin, Fréville et Pla-
teau ont proposé une heuristique, qui combine des calculs de coefficients duaux
avec des fixations de variables, une élimination de contraintes et une procédure
d’énumération, pour résoudre efficacement des instances & 2 contraintes [13].

3 Principe général de notre algorithme

Tenant compte des remarques faites sur ’exemple 2 de la section 2.2, notre
étude sur la résolution approchée de MKPO1 par la recherche locale (RL) s’est
plus particulierement focalisée sur les deux points suivants :

1. remise en cause de 'heuristique de mouvement (ou critere de choix d’un

voisin de la configuration courante) ;

2. recherche d’un moyen d’enrichir le simple processus de RL par une stratégie
globale.

Nous avons trouvé un principe commun pour répondre & ces deux points d’in-
vestigation.

L’idée maitresse de notre approche est de chercher autour de 'optimum % de
MKP. Notre hypothese est que les points binaires proches de Z sont de bonne
qualité. Le vecteur & contient ’information globale qui guidera notre processus
de RL tout en controlant le mécanisme de visite du voisinage N'(z) d’une confi-
guration courante z. Pour ce faire nous limitons la RL aux seuls points z' € S
tels que :distance(z',7) < dmas 2. La distance géométrique intervient dans le
mécanisme de mouvement. Le vecteur ou point T peut étre considéré comme
une information & caractere stratégique pour la recherche locale.

Sur 'exemple 2 (§2.2) le simplexe donne z = 30.3 et T = (1,1, %, 0,0) alors
que, rappelons-le, 2 = 25 pour & = (0,0,1,1,1). De ce point de vue notre heu-
ristique n’est donc pas plus convaincante que celle du ratio profit/ressource.
Enfin si 'on peut considérer £ comme un élément de connaissance a apporter

au processus de RL, son unicité en réduit passablement le caractere global.

Faisons pourtant la remarque suivante : toute(s) solution(s) de MKPO01
vérifie(nt) ’égalité : Z?Zl z; = k € IN. Si nous ajoutons cette égalité comme
contrainte au probleme MKP nous obtenons une série de problemes du type :

maximiser c.x
MKP[k] ¢ s.c. Az < betz € [0-1]",
oz)=keIN

ou o(x) est la somme des composantes du vecteur x. Nous disposons donc de
plusieurs points Zj;) pour explorer I'espace de recherche S. Cette approche,
directement inspirée par les travaux de Fréville et Plateau [12], n’est pas isolée.
En effet, de maniére tres contemporaine, ’ajout de la contrainte d’égalité a
été mis en ceuvre pour réduire ’espace de recherche dans le cas du sac & dos
multidimensionnel multiobjectif [14]. Illustrons cette heuristique sur ce méme
exemple de la section 2.2.

MKP[1] — Zn) = 12 et In) = (1,0,0,0,0)
MKP[2] — Zp) = 24 et T = (1,1,0,0,0)
MKP[3] — Zgp =25 et Tz = (0,0,1,1,1)

Son comportement semble plus prometteur et nous pouvons énoncer 1’'idée
générale de notre algorithme hybride : dans chaque hyperplan o(z) = k lan-
cer un processus de RL autour du point Z;. Nous allons donc alterner,
dans le processus d’optimisation, une phase de programmation linéaire PL avec

2Nous préciserons en section 5.2 les notions distance et dmaz.-

une phase de recherche locale tabou RL!*"°%, Chaque séquence PL/RL!%o"
pourra étre distribuée sur plusieurs machines.

La mise en ceuvre de ce principe se décompose en trois étapes :
— détermination des valeurs de k intéressantes;

— utilisation du simplexe pour calculer les Z[;) correspondants;
— exécution de la recherche locale tabou autour de ces points.

La section suivante décrit la phase simplexe, ou programmation linéaire PL,
qui traite les deux premieres étapes que nous venons de citer.

4 Phase simplexe

Le processus RL!°% effectue un échantillonnage discret autour de l’opti-
mum de MKP[k]. Notre hypothése est qu’en tant que tel il ne fera pas mieux
que la valeur Zzj;; de la solution continue de ce programme. La premiere étape
de notre approche consiste donc a trouver les valeurs de k£ qui fournissent des
bornes supérieures z[;) & un minorant z donné.

Fréville et Plateau [12] proposent un algorithme pour l’encadrement du
nombre de variables & I'optimum de MKPO1 qui fait appel & plusieurs outils
de la programmation linéaire. Nous avons développé un algorithme plus simple
dont le principe est d’utiliser RL!**°* pour obtenir un minorant z, puis résoudre
par le simplexe les deux problemes suivants MKPomin/z] et MKPomaz/z] :

minimiser o(x)
MKPomin[z] s.c. Az < bet z € [0-1],
cx>(z+1)

Soit omin[z] la valeur optimale de ce probléme. Si nous prenons moins d’objets
que kpin = [omin] la contrainte c.x > (z + 1) ne sera plus vérifiée.

maximiser o(x)
MKPomaz[z] { s.c. Az <betz € [0-1]",
cx > (z+1)

soit omax[z] la valeur optimale de ce probléme. Si nous prenons plus d’objets
que kmae = |omaz] 'une au moins des contraintes A.x < b ne sera plus vérifiée.
En conséquence, les seules valeurs de k intéressantes pour notre processus de
recherche locale sont celles comprises entre ki €t kmaz. Nous calculons donc,
par Palgorithme du simplexe, les (ke — kmin +1) MKP[k] qui nous fournissent
les points cherchés pour la phase RL!ebov,

La figure 1 résume le déroulement de cette phase simplexe ou PL sur ins-
tance ¢B30.250.10 due & Chu et Beasley [7]. Le programme RL!*%°% a besoin
d’un point pour amorcer la recherche, cela explique la ligne 1 de cet exemple.

Fia. 1 — phase PL pour ¢B30.250.10

1. résoudre MKP — Z, z = 108258.07 et o(Z) = 125.65,

2. lancer RL!**°" autour de Z — z = 107611,

3. omin[z] = 122.17 = kg = 123,

4. omaz[z] = 128.56 — ko, = 128,

5. k 123 124 125 126 127 128

Zrpp | 107811.87 | 108055.23 | 108212.76 | 108248.62 | 108138.39 | 107802.92

Remarquons enfin que la meilleure valeur zj;; = 108248.62 obtenue par les
(kmaz — kmin+1) MKP[k] est plus fine, en tant que borne supérieure de MKPO01,
que z = 108258.07 produite par la résolution de MKP.

5 Phase recherche locale

5.1 Définitions

Avant de détailler notre algorithme tabou nous résumons, dans ce para-

graphe, les éléments de terminologie que le lecteur retrouvera par la suite :

— la configuration z : c’est le vecteur binaire (z1,---,z,);

— S représente I'espace de recherche. Il peut étre égal & {0,1}" si 'on
considere toutes les configurations possibles € S réalisables ou non;

— le voisinage de z : N'(z) est le sous-ensemble des éléments de S accessibles
depuis I’élément x en une seule itération ;

— l'attribut est la valeur affectée & une composante. Dans le cas binaire on
peut identifier sans ambiguité un attribut & l’indice j de la composante
qui change de valeur;

— enfin le mouvement correspond au passage de la RL du point x & un
de ces voisins z' : mut(z,2') |2’ € N'(x). En reprenant ce qui vient d’étre
dit sur les attributs on peut aussi écrire mvt (i, s, ..., i) ot les indices i;
sont ceux des composantes de x qui sont complémentées dans z’. Un tel
mouvement est un k_change.

5.2 Réduction de ’espace de recherche

Nous allons dans cette section spécifier un sous ensemble X C S dans lequel
naviguera notre processus de recherche locale. Cette réduction de S reprend les
idées que I’on vient d’énoncer :

1. limitation de S & une sphére d’un rayon fixé autour du point Z[;) solution
optimale de MKP[k];

2. conservation du nombre d’objets retenus dans les configurations z, pro-
duites par RL!*"°* autour du point T[x), a la valeur constante k (intersec-

tion de S avec I'hyperplan {o(z) = k}).

Pour le point 1 nous utilisons la distance § définie, pour z et 2’ binaires ou
continus, par la formule §(z,z') = 327, |z; — 2| L’heuristique pour estimer
la distance maximale d,,4, autorisée depuis le point Zyy), est la suivante : soit
(1,1,---,1,r,---,74,0,---,0) les composantes triées par ordre décroissant du
vecteur Z[;). Les r; sont les composantes fractionnaires de Z) et 'on a :

1>r >2r>--- 21, >0.

Le mécanisme de RL peut choisir, dans le pire des cas, les objets qui corres-
pondent & ces composantes plutdt que ceux qui correspondent aux composantes
a 1. La figure 2 illustre cette configuration limite. u est le nombre de compo-

F1G. 2 — heuristique de calcul de d3) = 6(Tiimite, T[k))

Tlimite — 0 . 0].1].2]-k 0 . 0
T[p) - 1 . 1 1 1 rn r . . . 7, 0 . 0
6[k] = u—l—q—k + (]1-:1(1—7"]')

santes & 1 dans T}, u + ¢ est donc le nombre de composantes non nulles de
i‘[k]3. De plus U(i‘[k]) =k= Z?erj =k—u= 6[k] =2X(u+qg—k)€2xIN.

Dans le cas limite ott v = k nous obtenons d;; = 0 ce qui est tout a fait
logique puisque dans ce cas T est entierement binaire. Pratiquement, et selon
les instances, nous prendrons : dpmae X O[x)-

Chaque processus RL!*"°% lancé autour de T[] a donc son propre espace de
recherche X}, :

Xy ={r €{0,1}"|o(z) =k A 0(2,Zx]) < Omaz}
Notons ici que les A} sont disjoints. Cela réduit a 0 les risques de redondance
d’exploration des processus RL***°* qui peuvent donc s’exécuter indépendamment.

5.3 Voisinage

L’ensemble N (z) des voisins d’une configuration z est donc défini par la
formule suivante :

N(z) ={z' € X;|6(z,2") = 2}

A cause de la contrainte o(z) = k (implicite dans X}), A (z) n’est qu’un
sous-ensemble des points & distance 2 de z. Sa cardinalité est :

IN(z)] = (n — k) x k.

3Notons que u < k < u + ¢ sinon le probléeme est trivial.

Le mouvement induit par ce voisinage correspond au retrait d’un objet et
Pajout d’un autre, c’est un cas particulier de 2_change (c.f. définitions § 5.1).
Nous noterons indifféremment muvt(z,z") et mvt(i, j) avec r; = 1 — x; et z’; =
1 — z;. Cette formulation du voisinage va étre modifiée & la fin de la section

suivante pour tenir compte d’éléments liés & la gestion de la liste tabou.

5.4 Gestion dynamique de la liste tabou

La méthode d’élimination inverse (M EI), proposée par Glover [19], per-
met de définir le statut tabou d’un mouvement de maniere exacte. Cela signifie
qu’elle est équivalente a l’enregistrement complet des configurations visitées.
Elle est qualifiée de liste stricte [3]. Son principe consiste & mémoriser dans une
liste (running list) les attributs des mouvements effectués. Pour savoir si un
nouveau mouvement est tabou il faut parcourir la running list & U'envers. Ce
faisant on construit une autre liste, la séquence d’annulation résiduelle ou SAR
dans laquelle soit on recopie les attributs de la running list (y compris ceux du
nouveau mouvement), s’ils n’y sont pas déja, soit on les en enleve. Cette étape
est appelée trace des attributs du mouvement. Si au cours de cette étape on
rencontre la condition SAR = () alors le nouveau mouvement nous ramene a
un point déja visité. Il faut donc le rendre tabou. La complexité de la M ET est
donc O(iter?).

Dammeyer et Vof3 [8] ont réalisé une premiére mise en ceuvre de la MET
sur le MKPO1, dans laquelle la M EI analyse un nombre variable d’échanges
causés par l’algorithme DROP-ADD. Ce voisinage nécessite la gestion de traces
a nombre variable d’attributs. Cela accroit la complexité de la procédure. Dans
le cas de notre voisinage a k constant nous parcourons une seule fois la running
list et chaque fois que |[SAR| = 2 nous rendons tabou le mouvement qui implique
les attributs SARy et SAR;. L’algorithme suivant est associé a la proposition
logique : mwt(i, j) tabou & tabouli][j] = iter.

Algorithme 2 : MAJ_TABOU

i = frl % indice de fin de la running list
répéter
J =running list[i]
si j € SAR alors
| SAR=SAR6Sj
sinon
| SAR=SAR® j
si |[SAR| = 2 alors
tabou[SARy|[SAR;| = iter
tabou[SAR,|[SARy| = iter
1=1—1
jusqu’a i <0

10

Le principe de la liste stricte peut provoquer le blocage de la RL dans une
impasse x, tous les points x' € N(z) ayant déja été visités. La figure suivante
illustre ce cas pour S = {0,1}*.

FiG. 3 — blocage avec 1_change dans {0,1}*

.

En 7 itérations, avec un voisinage & I_change, le chemin parcouru aboutit &
une impasse alors que S n’a pas été completement visité.

Ce phénomene de blocage est d’une trés faible probabilité dans {0, 1}" avec
n > 100. Nous ne l'introduisons que pour sensibiliser le lecteur & un aspect
connexe beaucoup plus génant : un processus de recherche locale controlé par
une liste tabou stricte construit un chemin qui peut devenir une barriere entre
N(z) et une zone de X de points potentiellement intéressants. Il faut donc
autoriser, de temps en temps, le cyclage par un mécanisme d’aspiration [19, 22].

Nous contournons cet écueil par une remise & zéro de la running list. Tou-
tefois, pour que ce mécanisme n’entraine pas un cyclage systématique, nous
imposons que les configurations z visitées apres cette remise a zéro soient d’une
valeur c.x = 2 > 2y OU Zpy4y représente la valeur de la meilleure configuration
réalisable rencontrée jusque la. Evidemment pour que cela soit possible sans
tomber dans le cadre d’une simple descente les configurations non réalisables
(2 € [1,m]]a;.z > b;) sont admises.

Nous introduisons donc une mesure du niveau d’infaisabilité :

vp(z) = Z (a;.x — b;),

ilajz>b;

que nous chercherons & minimiser au cours de la RL. A chaque fois que vy(x)
vaut 0 nous effacons la running list et nous mettons a jour z,is,.

Voici, pour finir, la version définitive du voisinage :

N(z) ={z' € X|(0(z,2") = 2) A (c.x’ > zmin) A (mot(z,x") non tabou)}

11

5.5 Fonction d’évaluation et heuristique de mouvement

Nous précisons, dans cette section, comment & partir d’'un point x, nous
choisissons parmi les points ' € N (z) le point y qui fera I'objet du mouvement
mut(z,y).

La fonction d’évaluation d’une configuration z a deux composantes : vy (z) et
z(x) = c.x. La premiere composante est prioritaire sur la seconde. L’heuristique
du choix d’un voisin de x est donc :

_ { 2’ € N(z) |Va" € N ()
((@') < V(@) V (vn(a’) = va(@”) A 2(@) = 2(a"))

En cas d’égalité de la fonction d’évaluation le choix est aléatoire.

5.6 Configuration initiale

Pour amorcer le processus RL!*°% il faut construire un z;,; qui appar-
tienne a X}. Nous allons montrer qu’il suffit, pour cela, de choisir les k£ objets
correspondant aux plus fortes composantes de Z;, solution optimale de MKP k]
produit par simplexe.

Reprenons le schéma de la section 5.2 et construisons une suite de points

%)% qui part de Zjimite tout en décalant, a chaque étape, les k composantes 2
(z')* qui p ; q pe, p
1 vers la gauche :

F1G. 4 — construction de x;,;

T[p) - 1 . 1 1 1 7 re . . . rq O

2% = Ziimite - 0 . 0 17 1, 1, 0
x! - 0 oo 11y 0 0

Tingg = 2T 5 1 1,1y 0 . 0 0

Comme on peut le voir sur la figure 4 la distance de z; a Ty est égale a
celle de xg plus (r, — 1) soit a i) + (r, — 1). Par définition r, est strictement
inférieur & 1 donc z; s’est rapproché de Zj;). On a la relation de récurrence :

0; = (5(1‘i,i‘[k]) =01+ (T‘q,iJrl — 1) =0;_1 + € avec Vie; < 0.

La suite des distances (§;) correspondant & la suite (;) est strictement
décroissante depuis la valeur dj) ce qui garantit : yi4— < O3 Nous pou-
vons prendre comme configuration initiale ,;; le point z%T9~% qui appartient
bien & Xk.

4Pour ne pas surcharger le texte nous avons utilisé la notation en exposant : z* représente
un vecteur complet & ne pas confondre a la ¢ composante x; du vecteur z.

12

5.7 Algorithme RL"ov

L’algorithme RL!**°* (Algorithme 3) n’optimise pas directement MKP[k]. Il
résout® une suite de problemes de décision du type :

C.X > Zmin €t
Existe-t-il € {0,1}" tel que Az <b et
o(z) =k.

ou (zmin) €st une suite positive strictement croissante. Il explore les zones de
I’espace de recherche X} pour lesquelles z > z,,i,. Son objectif premier n’est
pas de maximiser un critere du type profit/ressource mais de minimiser vy.

Algorithme 3 : RL!*bov

iter =0
fri=20
tabou[n][n] + (—1)
T Tinit %Configuration initiale (figure 4)
sivp(x) =0 alors zpyin = 2(z); 2*
sinon zp;, = 0; 2 + (0)
répéter
2 =0; Upmin = 00
pour i |z; = 1 faire
pour j|z; =0 faire
si tabouli][j] # iter alors
(xi,2;) = (0,1) %On évalue le mouvement muvt(i, j)
si 0(x, Z[x1) < Omae A 2(T) > Zmin alors
si (Vp(2) < Vmin) V (Up(2) = Upmin A 2(x) > 2') alors
L (i) = (i,3)
2= 2(x) ; vmin = vp(2")
L L L (l'i,l’j) = (170)
si z' # 0 alors
(xir,xj) = (0,1) %On effectue le mouvement mvt(i', j')
si Umin = 0 alors
frl =0 %On efface la running list
Zmin = 2(T)
L z*=x
sinon
iter = iter +1
running list = running list &' ® j'; fri= fri+2
L L MAJ_TaBou
jusqu’a (2’ =0) Vv (frl > |R.L.|)

Nous notons |R.L.| la taille de la running list qui correspond au nombre maxi-

5L’objet ici est de trouver une solution mais pas de prouver qu’il n’en existe pas.

13

mum d’itérations sans production d’une configuration z réalisable (A.z < b).
Passé cette limite le processus s’interrompt. S’il ne trouve pas de configuration
respectant les contraintes de sac, cet algorithme retourne le vecteur nul. Enfin
pour des raisons de clarté le facteur aléatoire a été omis. Sa mise en ceuvre
consiste simplement a parcourir les composantes du vecteur z dans un ordre
aléatoire.

Une analyse de la complexité de RL!%°% sera faite en section 7 & la suite de
la présentation des résultats.

6 Résultats

Nous avons expérimenté notre approche sur 3 séries de jeux tests. Pour toutes
ces instances RL!o% 3 été exécuté, de facon distribuée, avec les 10 germes
(0..9) de la fonction standard srand(). L’algorithme est codé en C et tourne
sur des configurations (machine/systéme) aussi diverses que : (PII350/Win.NT),
(P1I450/Win.NT), (PIII500/Win.NT), (Ultra Sparc 5/Unix) et (Ultra Sparc 30/Unix).
Les temps d’exécution en secondes, qui figurent dans les colonnes t.t., sec.” et
sec., sont donc donnés seulement & titre indicatif.

6.1 Jeux classiques

Nous commencons par les 56 instances classiques que ’on retrouve notam-
ment dans [1, 2, 5,7, 8,10, 11, 12, 20, 24, 31, 32]. Ces jeux ne sont plus considérés
comme difficiles aujourd’hui [7, 23]. Cependant :

— d’une part ils constituent une référence a laquelle une méthode approchée

ne peut se soustraire sans arguments a priori;

— d’autre part ils permettront une analyse comparative des valeurs d) qui

fournira, justement, un début d’argumentation pour caractériser a priori
la difficulté des problemes.

Nous avons, pour ces jeux, fixé la taille de la running list & 2000 (|R.L.| =
2000). Les résultats sont présentés dans les tableaux 1 et 2.

PL/RL!%% trouve la solution optimale (connue) dans tous les cas (2* = 2).
Les valeurs de la phase PL n’ont pas d’intérét en tant que bornes puisque 1’op-
timum est connu. Nous indiquons tout de méme l'intervalle [k] des hyperplans
o(x) = k explorés par RL!*°%. Pour cette série et la suivante (i des fins de
comparaison) nous donnons la distance 0* de la meilleure solution z* & Zp;-1,
ainsi que la valeur dyz+) (§5.2) a partir de laquelle on estime le rayon de recherche
autour du point Zf;-). La colonne iter* correspond au nombre de mouvements
pour atteindre x*. La colonne t.t. représente la somme des temps sur tous les
processus dans chaque hyperplan o(z) = k.

14

Nous ne faisons pas figurer le nombre total d’itérations effectuées par RL!*bo"
puisqu’il peut se déduire par la simple formule :

1
iter” + (5 X |R.L.|).

TAB. 1 — Instances classiques

Pb. nxm | (k] | 25|k 0" | O] | iter® | t.t. |
fpl 27 x4 | 14.23 3090 | 17 | 4.14 | 6.00 79 0
fp2 34 x4 | 14..28 3186 | 23 | 7.48 | 6.00 7 1
fp3 19 x 2 2..6 28642 31273 | 2.00 1 0
fp4 29 x2 | 11..20 95168 | 14 | 2.18 | 2.00 1 1
fp5 20 x10 | 9..11 2139 | 10 | 3.55 | 8.00 1 0
fp6 40 x 30 | 7..12 776 9 | 5.16 | 8.00 27 1
fp7 37 x 30 | 15..20 1035 | 17 | 3.55 | 8.00 1 1
peterl | 6 x 10 3.4 3800 3| 1.16 | 4.00 0 0
peter2 | 10 x 10 3.7 87061 5 | 4.25 | 2.00 2 0
peterd | 15 x 10 | 8..11 4015 9 | 1.38 | 2.00 1 0
peter4 | 20 x 10 | 9..11 6120 9 | 0.07 | 2.00 0 0
peterd | 28 x 10 | 15..18 12400 | 18 | 2.00 | 2.00 1 1
peter6 | 39 x5 | 24..33 10618 | 27 | 4.14 | 6.00 331 9

peter7 | 50 x5 | 26..40 16537 | 35 | 7.34 | 8.00 852 | 31
hpl 28 x4 | 15..24 3418 | 18 | 4.14 | 6.00 79 3
hp2 35 x4 | 14..28 3186 | 23 | 7.34 | 8.00 9

weingl | 28 x2 | 12..15 141278 | 14 | 2.00 | 2.00 1 1

weing2 | 28 x 2 | 10..12 130883 | 11 | 2.00 | 4.00 1 1

weing3 | 28 x 2 5..9 95677 6 | 2.73 | 2.00 1 2

weingd | 28 x 2 10.17 119337 | 15 | 4.78 | 2.00 127 4

weingd | 28 x 2 6..9 98796 9 | 0.09 | 2.00 0 0

weing6 | 28 x 2 | 10..12 130623 | 11 | 4.00 | 2.00 19 0

weing7 | 105 x 2 | 86..90 | 1095445 | 87 | 2.62 | 4.00 1 8

weing8 | 105 x 2 | 27..36 624319 | 30 | 2.18 | 2.00 1] 24

sentol | 60 x 30 | 18..23 7772 | 20 | 5.16 | 8.00 27 | 16

sento2 | 60 x 30 | 31..36 8722 | 33 | 3.55 | 8.00 1] 10

Nous remarquons qu’en général §*, qui est pour ces jeux la distance de
la solution optimale & Zp;), est assez faible. Cela explique la rapidité de notre
algorithme a résoudre ces instances. On constate par ailleurs que sur 10 instances
(iter* = 0), 'heuristique du plus proche point suffit & construire la solution
optimale et qu’il suffit d’un mouvement pour 31 autres instances. Pour ces 41
instances il n’est pas utile de mettre en oeuvre la métaheuristique tabou pour
trouver l'optimum.

15

TaB. 2 — Instances classiques (suite et fin)

Pb. | nxm | (k] | 2|k 0" | O | iter™ | t.t. |
weish01 | 30 x5 | 12..14 4554 | 12 | 0.72 | 2.00 0 2
weish02 | 30 x5 | 13..15 4536 | 14 | 3.28 | 2.00 3 2
weish(03 | 30 x5 | 12..14 4115 | 12 | 1.41 | 2.00 1 2
weish04 | 30 x5 | 11..12 4561 | 12 | 2.00 | 2.00 1 1
weish05 | 30 x5 | 11..12 4514 | 12 | 2.00 | 2.00 1 1
weish06 | 40 x 5 | 20..21 5557 | 20 | 3.20 | 2.00 8 1
weish(07 | 40 x 5 | 19..20 5567 | 20 | 2.70 | 2.00 1 2
weish(08 | 40 x5 | 21..22 5605 | 21 | 2.55 | 2.00 1 2
weish09 | 40 x 5 | 15..16 5246 | 16 | 0.19 | 2.00 0 1
weish10 | 50 x 5 | 19..23 6339 | 21 | 2.69 | 2.00 1 5
weishll | 50 x 5 | 18..20 5643 | 19 | 0.82 | 4.00 0 4
weish12 | 50 x 5 | 20..22 6339 | 21 | 2.48 | 2.00 1 3
weishl3 | 50 x 5 | 19..22 6159 | 21 | 2.30 | 2.00 1 4
weishl4 | 60 x5 | 23..26 6954 | 26 | 0.63 | 4.00 0 5
weishld | 60 x5 | 26..27 7486 | 26 | 2.00 | 4.00 1 3
weishl6 | 60 x 5 | 25..28 7289 | 26 | 2.44 | 2.00 1 4
weishl7 | 60 x 5 | 38..41 8633 | 41 | 2.00 | 2.00 1 4
weishl8 | 70 x 5 | 39..41 9580 | 40 | 2.26 | 2.00 1 4
weishl9 | 70 x 5 | 26..29 7698 | 27 | 2.00 | 2.00 1 7
weish20 | 70 x 5 | 35..37 9450 | 35 | 0.31 | 2.00 0 4
weish2l | 70 x 5 | 32..35 9074 | 32 | 2.00 | 2.00 1 6
weish22 | 80 x5 | 32..35 8947 | 33 | 4.00 | 2.00 12 7
weish23 | 80 x5 | 30..33 8344 | 32 | 4.00 | 2.00 461 | 12
weish24 | 80 x 5 | 45..47 | 10220 | 45 | 0.06 | 2.00 0 8
weish25 | 80 x 5 | 40..42 9939 | 40 | 2.00 | 2.00 1 7
weish26 | 90 x 5 | 35..39 9584 | 36 | 2.00 | 2.00 1| 14
weish27 | 90 x 5 | 37..39 9819 | 38 | 1.43 | 2.00 1 7
weish28 | 90 x 5 | 36..38 9492 | 37 | 1.34 | 4.00 1 9
weish29 | 90 x 5 | 36..38 9410 | 36 | 0.02 | 2.00 0 6
weish30 | 90 x 5 | 50..51 | 11191 | 51 | 2.00 | 2.00 1 2

Nous rappelons que t.t. est le temps total, pour 10 relances de 1000 itérations
(une par germe aléatoire), pour chaque hyperplan : ainsi ¢.t. est-il plus important
pour weish23 que pour weish26 qui contient 10 variables de plus et qui exige
I’exploration d’ un hyperplan supplémentaire. iterx est le nombre d’itérations,

dans ’hyperplan o(z) = k*, pour atteindre la meilleure configuration.

16

6.2 Jeux Glover et Kochenberger

Cette deuxieme série de tests est constituée des 7 dernieres instances pro-
posées par Glover et Kochenberger [20]. Le tableau 3 résume les valeurs clés
de la phase PL. z = max(Z)) est la meilleure valeur parmi les optima des

TAB. 3 — phase PL sur GK18 < GK24
GK | nxm | (k] | z z | sec. |
18 | 100 x 25 | 58..64 | 4545.66 | 4545.79 4
19 | 100 x 25 | 49..55 | 3886.45 | 3886.80
20 | 100 x 25 | 61..74 | 5198.54 | 5198.64
21 | 100 x 25 | 40..46 3219.73 | 3219.92
22 | 100 x 25 31..37 2544.02 | 2544.03
23 | 200 x 15 | 119..126 | 9245.53 | 9245.67 | 12
24 | 500 x 25 | 116..125 | 9080.44 | 9080.45 | 220

= O O i

programmes MKP{;). La derniére colonne (sec.) indique les durées cumulées, en
secondes, pour la résolution de MKP ainsi que des MKP ;.

Le tableau 4 correspond & la phase recherche locale. Pour cette série de
problemes, ainsi que la suivante, la taille de la running list est fixée & 100000.
La colonne Ty r indique les résultats obtenus par ’algorithme tabou de Hanafi et
Fréville [23] que l'on peut comparer avec la valeur z*, signalée en caracteres gras,
de la meilleure configuration z*, & k* objets, trouvée par RL!**°", La colonne
T}, contient les récentes valeurs obtenues par Hanafi avec son algorithme tabou.
Les colonnes sec.” et sec. indiquent respectivement le temps d’obtention de z*
et le temps total d’exécution d’une phase RL!*°% Nous améliorons strictement
la majorité des résultats sur ces instances.

TAB. 4 — phase RL'**°" sur GK18 < GK24
| GK || Tar | Ty r || z* | & | Ok | k* | iter™ | sec.” | sec. |
18 4524 | 4526 4528 | 13.55 | 24.00 61 3683 10 395
19 3866 | 3867 3869 | 15.29 | 20.00 51 3144 9 382
20 5177 | 5179 5180 | 15.95 | 22.00 70 2080 5 366
21 3195 | 3197 3200 | 10.78 | 22.00 | 42 1465 4 366
22 2521 | 2523 2523 | 14.24 | 28.00 34 512 2 383
23 9231 | 9233 9235 | 19.69 | 16.00 | 123 | 16976 131 723
24 9062 | 9064 9070 | 15.21 | 22.00 | 119 | 9210 268 2027

Par rapport aux jeux précédents (§ 6.1), le nombre d’itérations et, par voie
de conséquence le temps CPU, nécessaires a I'obtention de ces solutions ont
augmentés. En effet :

— les nombres n et m, plus grands pour ces instances, interviennent dans la

complexité de la fonction d’évaluation du voisinage;

17

- 6[k*] a augmenté et Cg““*] 6 donne une idée de la combinatoire & traiter.
Notre processus doit parcourir un espace de recherche X}, plus vaste. A échantill-
onnage équivalent de A}, il faut plus d’itérations. Comme nous 1’avons évoqué
au début de la section sur les jeux classiques nous avons, avec les valeurs dy,
une mesure expérimentale de la difficulté d’une instance de MKPO1.

6.3 Jeux Chu et Beasley

270 instances de MKPO1 de tailles allant de 100 a 500 variables et de 5 a
30 contraintes sont proposées, trés récemment, par Chu et Beasley [7] et consti-
tuent une partie de la OR-LIBRARY ".

Nous présentons, dans un premier temps, un tableau synthétique sur 24

instances couvrant toutes les caractéristiques offertes par leurs auteurs (n x m x
a®) exceptées n = 500 et m = 30 qui font 'objet d’un autre tableau.

TAB. 5 — 24 instances CBm.n.r

CBm.n.r | [k] | z || AGcep || z* | k* | iter™ | sec.” |
5.100.0 28..31 24585.90 24381 24381 29 1 1
5.100.10 51..55 42939.52 42757 42757 52 187 1
5.100.20 75..78 60016.56 59822 59822 78 0 0
10.100.0 26..29 23480.64 23064 23064 27 2749 3
10.100.10 50..53 41712.64 41395 41395 51 173 1
10.100.20 75..78 57626.33 57375 57375 7 1 1
30.100.0 23..26 22579.07 21946 21946 24 420 1
30.100.10 48..51 41276.36 40767 40767 49 7625 15
30.100.20 73..75 57987.77 57494 57494 73 42 1
5.250.0 71..74 59442.47 59312 59312 73 252 1
5.250.10 130..135 109220.64 109109 109109 132 2984 10
5.250.20 189..194 149765.67 149659 149659 192 9663 31
10.250.0 66..70 59489.34 59187 59187 68 12373 60
10.250.10 126..131 111147.15 110863 110889 128 468 2
10.250.20 186..190 152031.39 151790 151801 188 24536 99
30.250.0 61..65 57430.15 56693 56796 63 2221 14
30.250.10 123..128 108258.07 107689 107770 125 65392 1399
30.250.20 186..190 150574.32 150083 150163 187 27015 332
5.500.0 144..149 120234.92 120130 120134 146 39350 656
5.500.10 265..270 218500.08 218422 218426 267 6761 90
5.500.20 381..387 295896.38 295828 295828 383 5012 72
10.500.0 132..139 118019.48 117726 117746 134 55794 776
10.500.10 254..260 217552.92 217318 217343 256 48536 648
10.500.20 376..382 304555.03 304344 304350 379 68008 1321

Le format générique du libellé de ces instances est le suivant : CBm.n.r avec
0 < r < 29. La colonne n x m n’est donc plus utile. De méme, la valeur «
peut se déduire a partir du rang r de linstance : 0 < r < 9 = a = 0.25,
10<7r<19=a=050et20 <r <29 = «a = 0.75. De facon similaire &
la section précédente, la colonne AG¢p représente les meilleures valeurs obte-
nues par l'algorithme génétique de Chu et Beasley [7]. Les valeurs optimales,

6Nous rappelons que O+ est un entier pair (§5.2).
Taccessible a I’adresse : http://mscmga.ms.ic.ac.uk/.
8 est le taux de débordement des ressources : b/ E;;l Ajj.

18

lorsqu’elles sont connues, figurent en italique. RL!**°* produit bien une solu-
tion optimale dans ce cas. Par ailleurs nous améliorons la majorité des résultats
pour lesquels cet optimum n’est pas connu (valeurs indiquées en caracteres gras).

Par ailleurs, nous améliorons de maniére significative les meilleurs résultats
obtenus par Chu et Beasley [7] sur les 30 instances les plus importantes de la
OR-LIBRARY (cf. table table 6). D’autre part, sur cette série d’instances, la
valeur z est sensiblement plus fine que la borne Zz.

TAB. 6 — 30 instances ¢B30.500

| r | [k] | H | H || AGcB | z | k* iter™ | sec.” |

0 128..133 116601.41 116619.01 115868 115950 130 17841 397
1 125..131 115365.72 115370.13 114667 114810 128 104866 2264
2 125..132 117330.33 117342.45 116661 116683 128 73590 1203
3 125..131 115936.14 115946.40 115237 115301 128 71820 1587
4 125..133 117078.97 117079.29 116353 116435 127 75909 1784
5 128..134 116362.03 116377.55 115604 115694 131 33391 684
6 126..132 114682.47 114689.65 113952 114003 128 107994 2851
7 125..132 114833.73 114847.83 114199 114213 129 87593 1503
8 125..132 115901.29 115902.61 115247 115288 127 75243 1495
9 125..132 117661.71 117668.77 116947 117055 129 39044 869
10 249..254 218597.06 218601.52 217995 218068 251 6828 116
11 249..254 215074.67 215074.71 214534 214562 251 89201 2478
12 248..253 216395.94 216401.07 215854 215903 250 60074 1311
13 249..255 218345.99 218350.48 217836 217910 251 50732 1121
14 248..254 216094.49 216094.51 215566 215596 251 62524 1262
15 250..257 216326.72 216327.35 215762 215842 253 34201 633
16 250..256 216375.27 216376.30 215772 215838 252 54476 1003
17 250..257 217013.40 217014.09 216336 216419 253 40683 947
18 250..257 217830.74 217839.18 217290 217305 253 64489 1475
19 250..256 215218.07 215218.48 214624 214671 252 18531 368
20 373..378 302038.59 302038.76 301627 301643 375 1298 17

21 372..379 300453.13 300455.00 299985 300055 374 78278 1532
22 373..379 305499.91 305501.21 304995 305028 375 64926 1161
23 373..379 302447.30 302456.21 301935 302004 375 26901 1110
24 374..379 304895.74 304901.35 304404 304411 376 20483 333
25 371..377 297409.08 297409.44 296894 296961 374 31403 462
26 372..377 303763.56 303765.88 303233 303328 373 43398 757
27 374..380 307397.96 307402.50 306944 306999 376 33810 1366
28 373..379 303605.11 303605.92 303057 303080 374 17647 350
29 373..379 301014.80 301020.63 300460 300532 376 6948 150

La taille de la running list étant fixée & 100000, nous savons que l’algorithme
a effectué 50000 itérations apres iter*. Nous donnons, dans la section suivante,
une analyse de la complexité temporelle de cette fin de processus d’optimisation.

Nous terminons cette étude comparative par la synthese des résultats sur
I’ensemble des jeux a 500 variables de la OR-LIBRARY. Nous ajoutons les
résultats obtenus par M.A. Osorio et al. [29] lors de récents travaux dont I’ob-
jectif était d’améliorer les performances de ’outil de programmation linéaire
en nombres entiers CPLEX (V6.5.2) ; travaux qui portent sur un algorithme de
fixation de variables avec adjonction de coupes (résultats en colonne Fiz+Cuts).
Nous retranscrivons également, en colonne CPLEX, les valeurs trouvées par ce
logiciel sans les modifications effectuées par les auteurs du rapport [29].

19

TAB. 7 — Moyennes des meilleurs résultats par groupe de 10 instances CBm.500
m « AG¢p | Fiz+Cuts | CPLEX | PL/RL | (2—2%)/Z
5 1/4 | 120616 120610 120619 | 120623 0.0008
1/2 | 219503 219504 219506 | 219507 0.0004
3/4 | 302355 302361 302358 302360 0.0002
10 | 1/4 | 118566 118584 118597 | 118600 0.0020
1/2 | 217275 217297 217290 | 217298 0.0009
3/4 | 302556 302562 302573 | 302575 0.0007
30 | 1/4 | 115470 115520 115497 | 115547 0.0055
1/2 | 216187 216180 216151 216211 0.0024
3/4 | 302353 302373 302366 | 302404 0.0015

Fiz+Cuts et CPLEX sont interrompus apres 3 heures de calcul (sur un
PIII500) ou lorsque larbre de recherche dépasse les 250 Mo d’occupation mémoire.
Nous constatons que, plus le nombre de contraintes est élevé, plus la moyenne
des écarts & 'optimum continu est grande (derniére colonne), plus notre ap-
proche se distingue des autres algorithmes en conservant une avance qualitative
significative.

7 Analyse de la complexité

7.1 Voisinage et running list

L’estimation du temps CPU pris par RL!***°* en fonction du nombre total
d’itérations n’est pas facile. En effet la running list est remise a zéro a chaque
fois que 'on rencontre une configuration réalisable (§5.4). Etant donné que toute
phase RL!**° finit par un nombre constant (|R.L.|/2) de mouvements on peut
proposer, pour cette étape, la formule suivante :

e
sec. s (A xiter x (n = k) x) + (B x 2= 1))

ou : A représente le colit moyen, en secondes par itération, du calcul de la fonc-
tion d’évaluation du voisinage, B celui de la mise a jour de la liste tabou. Dans
cette formule, le coefficient 4 est assez imprécis : en effet nous nous limitons a
un rayon d,q, autour d’un point (). Nous n’avons donc pas systématiquement,
la mesure de z(x), mais surtout celle de vy(z) qui colite m, & effectuer. Faute

TAB. 8 — Temps de calcul en secondes

| |RL| | n=100 100 | 100 | 250 | 250 | 250 | 500 | 500 | 500 |
i m=5 10 30 5 10 30 5 10 30
25000 21 22 25 56 59 82 199 222 244

50000 70 73 78 142 148 193 425 479 526
100000 253 262 273 410 424 512 | 1001 | 1106 | 1193
200000 | 1046 | 1076 | 1100 | 1371 | 1427 | 1608 | 2566 | 2771 | 2975

20

de pouvoir évaluer correctement A et B nous avons regroupé dans le tableau 8
les temps d’exécution sur des instances & a = 0.50 pour toutes les combinaisons
n X m et pour 4 tailles de la running list. La machine utilisée est un PIII500.
Nous avons modifié I’algorithme RL!**°% en supprimant la remise 3 zéro de la
running list pour avoir un nombre d’itérations directement lié & la taille de cette
derniere. Le facteur quadratique di a la gestion de la liste tabou est assez faible.
Le temps maximum est de moins de 20 minutes pour |R.L.| = 100000. C’est la
valeur & rajouter aux temps indiqués dans les colonnes sec.” des tableaux 5 et 6.

Dans le cas d’une parallelisation des processus tabou avec une machine par
germe de srand(), ce temps n’est pas prohibitif. Nous pouvons méme accroitre
la taille de la running list pour tenter d’améliorer encore les résultats (Table
9 : nous constatons un gain par rapport aux valeurs des tableaux 5 et 6. Nous

TAB. 9 — Augmentation de la running list
|R.L.| = 100000 |R.L.| = 300000

CB o7 | 21 z5 | 05 | iter” tt. | §(z1,x3) |
5.500.10 5.8 218426 | 218428 9.26 173312 | 6441 14.0
30.500.0 | 15.93 | 115950 | 115991 | 18.61 | 264408 | 9760 24.0

remarquons aussi que les distances §3 aux optima Z[s7] et [139] ont augmenté.
En terme de combinatoire la distance §(z7,z3) entre la nouvelle solution z3 et
la précédente =] est relativement importante. Le processus tabou a exploré plus
loin. Le temps total t.t. (en secondes) devient important mais cette évolution
nous encourage 3 travailler sur la complexité de la procédure RL!*ou,

7.2 Le parametre 0,,.,;

Enfin le parametre §,,4, est un facteur crucial de efficacité de notre algo-
rithme. Le tableau 10 illustre bien l'influence de §,,,, a la fois sur la stabilité
de RL**bov vis-a-vis de la discrimination aléatoire des meilleurs candidats dans
N(z) et sur le temps total d’exécution de RL!**°*. La colonne g contient la
valeur du germe de la fonction srand(). Nous soulignons en caractere gras les
temps minimums et maximums d’exécution complete de la phase tabou pour
chacune des valeurs de 6,,42-

Remarquons toutefois que des valeurs d,,,4, trop faibles risquent d’interdire
des zones intéressantes de A}, (c.f. valeurs de 6] et 05 table 9). Ce parametre
de réglage augmente bien str la complexité globale de notre approche. Nous
nous sommes limités & dpmax = coef x § avec coef € {0.75,1,1.5,2} et méme
exceptionnellement 3 pour certains jeux de la section 6.1 pour lesquels dj;+) était
trop petit (voir tableaux 1 et 2).

21

TAB. 10 — Influence de dpmqp sur RLIO% : Gr24, k* = 119, dr119) = 22.0

g Jmam =0.75 X 6[119] =16.5 Jmam =0.6 X 6[119] =13.2
iter™ | sec.” sec. 0 z" iter™ | sec.” sec. 0 z"

0 | 67354 | 2200 | 4014 | 10.87 | 9070 || 25172 | 626 2120 | 10.87 | 9070
1 | 26735 | 763 2581 | 16.17 | 9067 || 68809 | 1924 | 3409 | 10.87 | 9070
2 | 46175 | 1373 | 3171 | 13.81 | 9067 || 30508 | 779 2297 | 10.87 | 9070
3 | 15882 | 438 2282 | 14.75 | 9067 289 8 1445 | 10.87 | 9070
4 | 87218 | 2983 | 4810 | 10.87 | 9070 1754 39 1470 | 10.87 | 9070
5 4879 142 1949 | 16.04 | 9066 || 54029 | 1338 | 2809 | 10.87 | 9070
6 | 79848 | 2509 | 4237 | 14.90 | 9068 || 71834 | 1838 | 3290 | 10.87 | 9070
7 | 9210 268 | 2027 | 15.21 | 9070 6758 150 1616 | 10.87 | 9070
8 | 41101 | 1205 | 2901 | 14.69 | 9067 || 44282 | 1212 | 2633 | 10.87 | 9070
9 | 17572 | 507 2234 | 10.87 | 9070 || 25378 | 624 2082 | 10.87 | 9070

8 Conclusion

Nous avons mis en ceuvre une approche hybride tres performante qui com-
bine la programmation linéaire et la recherche locale tabou. Son principe général
est d’utiliser la méthode du simplexe pour obtenir des points continus autour
desquels lancer un algorithme tabou. Nous avons introduit une caractéristique
intéressante (drz)) pour les problemes MKPO1 et proposé une alternative au
critére de choix profit/ressource pour le mécanisme de transformation locale
d’une configuration z. Nous avons aussi développé une version relativement ef-
ficace de la méthode d’élimination inverse dont 1’exploitation peut renforcer
d’autres algorithmes tabou.

L’idée d’échantillonner {0,1}" autour d’optima de [0-1]" s’est avérée tres
bénéfique et performante. En effet, notre algorithme hybride améliore de maniere
significative les derniers résultats connus sur des instances difficiles [7, 23].

Ce travail peut apporter une contribution dans le cadre des méthodes exactes

et cela a deux titres :

— réduction de I’espace de recherche par encadrement du nombre de variables
a Poptimum : la colonne [k] des tableaux 3, 5 et 6 donnent les valeurs
potentiellement intéressantes pour 'optimum ;

— fixation de variables a partir d’'un minorant z de bonne qualité, sa configu-
ration z et les coiits réduits des variables hors base [2, 21] : si on applique
ce principe sur 'instance GK024 & 500 variables, due & Glover et Kochen-
berger [20], PL/RL!**" nous fournit z, tel que c.z = 9070 (§4). On peut
alors fixer 38 variables a 0.

Plusieurs voies d’amélioration sont encore & explorer :

— une étude plus précise sur la distance d,,4, qui limite ’espace de recherche
autour des points continus T, augmentera Uefficacité de RItabou .

22

— la mise en ceuvre d’un mécanisme de relance permettra éventuellement de
trouver des solutions de meilleure qualité;

— la prise en compte, dans une version distribuée, d’une population d’op-
tima locaux, pour intégrer de nouvelles contraintes aux programmes re-
laxés MKP[k] puis, par le simplexe, générer de nouveaux points continus
pour relancer la RL.

L’idée la plus intéressante semble bien étre de transformer le schéma & sens
unique PL/RL!*%" qui correspond & une simple alternance entre le simplexe
et tabou par une relation réactive PL <> RL!°% plus riche qui construirait,
de maniere dynamique, un probleme relaxé dont la solution continue serait plus
attractive pour la recherche locale.

Voici donc de nouvelles perspectives pour la résolution approchée du sac a
dos multidimensionnel en variables bivalentes, qui nous ’espérons, apporteront
des résultats encore meilleurs dans un proche avenir.

Remerciements

Nous tenons a remercier Said Hanafi pour nous avoir procuré les jeux de la
série GK18 + GK24 (§6.2) sur lesquels il a travaillé ainsi que pour ses amples
commentaires sur la M EI.

Références

[1] R. Aboudi and K. Jérnsten. Tabu Search for General Zero-One Integer
Programs using the Pivot and Complement Heuristic. ORSA Journal of
Computing, 6(1) :82-93, 1994.

[2] E. Balas and C.H. Martin. Pivot and Complement a Heuristic for 0-1
Programming. Management Science, 26 :86-96, 1980.

[3] R. Battiti and G. Tecchiolli. The reactive tabu search. ORSA Journal on
Computing, 6(2) :128-140, 1994.

[4] R. Bellman and D. Stuart. Applied Dynamic Programming. Princeton
University Press, 1962.

[5] P. Boucher and G. Plateau. Etude des méthodes de bruitage appliquées au
probléme du sac a dos a plusieurs contraintes en variables 0-1. In JNPCC’99
5¢MeS journées nationales sur la résolution pratique de problémes NP-
complets, pages 151-162, 1999.

[6] I. Charon and O. Hudry. The noising method : a new method for combi-
natorial optimization. Operations Research Letters, 14 :133-137, 1993.

[7] P.C. Chu and J.E. Beasley. A genetic algorithm for the multidimensional
knapsack problem. Journal of Heuristic, 4 :63—-86, 1998.

[8] F. Dammeyer and S. Vof. Dynamic tabu list management using the reverse
elimination method. Annals of Operations Research, 41 :31-46, 1993.

23

[9] G.B. Dantzig. Discrete-variable extremum problems. Operations Research,
5 :266-277, 1957.

[10] A. Drexl. A simulated annealing approach to the multiconstraint zero-one
knapsack problem. Computing, 40 :1-8, 1988.

[11] A. Fréville and G. Plateau. Heuristic and reduction methods for multiple
constraints 0-1 linear programming problems. European Journal of Opera-
tional Research, 24 :206-215, 1986.

[12] A. Fréville and G. Plateau. Sac & dos multidimensionnel en variable
0-1 : encadrement de la somme des variables & l'optimum. Recherche
Opérationnelle, 27(2) :169-187, 1993.

[13] A. Fréville and G. Plateau. The 0-1 bidimensional knapsack problem :

toward an efficient high-level primitive tool. Journal of Heuristics, 2 :147—
167, 1997.

[14] X. Gandibleux and A. Fréville. The multiobjective tabu search method
customized on the 0/1 multiobjective knapsack problem : the two objectives
case. Journal of Heuristics, 2000. & paraitre.

[15] M. Garey and D. Johnson. Computers & Intractability A Guide to the
Theory of NP-Completeness. W.H. Freeman and Company, 1979.

[16] B. Gavish and H. Pirkul. Allocation of data bases and processors in a dis-
tributed computting system. Management of Distributed Data Processing,
31 :215-231, 1982.

[17] B. Gavish and H. Pirkul. Efficient algorithms for solving multiconstraint
zero-one knapsack problems to optimality. Mathematical Programming,
31 :78-105, 1985.

[18] P.C. Gilmore and R.E. Gomory. The theory and computation of knapsack
functions. Operations Research, 14 :1045-1074, 1966.

[19] F. Glover. Tabu search. ORSA Journal of Computing, 2 :4-32, 1990.

[20] F. Glover and G.A. Kochenberger. Critical event tabu search for multidi-
mensional knapsack problems. In I.LH. Osman J.P. Kelly, editor, Metaheu-
ristics : The Theory and Applications, pages 407-427. Kluwer Academic
Publishers, 1996.

[21] M. Gondran and M. Minoux. Graphes € algorithmes. Eyrolles, 1985.

[22] S. Hanafi, A. El Abdellaoui, and A. Fréville. Extension de la Méthode
d’Elimination Inverse pour une gestion dynamique de la liste tabou. a
paraitre dans RAIRO.

[23] S. Hanafi and A. Fréville. An efficient tabu search approach for the 0-

1 multidimensional knapsack problem. FEuropean Journal of Operational
Research, 106 :659-675, 1998.

[24] J.S. Lee and M. Guignard. An approximate algorithm for multidimensional
zero-one knapsack problems a parametric approach. Management Science,
34(3) :402-410, 1998.

24

[25]

[26]

[27]

J. Lorie and L.J. Savage. Three problems in capital rationing. Journal of
Business, 28(3) :229-239, 1955.

A. Lgkketangen and F. Glover. Solving zéro-one mixed integer program-
ming problems using tabu search. Furopean Journal of Operational Re-
search, 106, 1998. Special Issue on Tabu Search.

A. Lgkketangen and F. Glover. Candidate list and exploration strategies for
solving 0/1 mip problems using a pivot neighborhood. In Metaheuristics.
Kluwer Academic Publishers, 1999.

S. Martello and P. Toth. Knapsack Problems : Algorithms and Computer
Implementations. John Wiley, 1990.

M.A. Osorio, F. Glover, and Peter Hammer. Cutting and surrogate
constraint analysis for improved multidimensional knapsack solutions.
Technical report, Hearin Center for Enterprise Science. Report HCES-08-
00, 2000.

W.H. Press, S.A. Teukolsky, W.T. Vetterling, and B.P. Flannery. Numerical
Recipes in C. Cambridge University Press, 1992.

W. Shih. A branch & bound method for the multiconstraint zero-one knap-
sack problem. Journal of the Operational Research Society, 30 :369-378,
1979.

Y. Toyoda. A simplified algorithm for obtaining approximate solutions to
zero-one programming problem. Management Science, 21(12) :1417-1427,
1975.

25

